THE UNIVERSITY OF
 MELBOURNE

The University of Melbourne-School of Mathematics and Statistics School Mathematics Competition, 2023 INTERMEDIATE DIVISION SOLUTIONS

1. Let m be a positive integer, such that $2 m+1$ is a perfect square. Show that $m+1$ is the sum of two successive perfect squares.

Solution: Suppose $2 m+1=n^{2}$, with n an integer. Since n^{2} is odd, so is n. Write $n=2 k+1$, where k is an integer. Then $2 m+1=(2 k+1)^{2}$, which can be solved to give

$$
m=\frac{4 k^{2}+4 k}{2}=2 k^{2}+2 k,
$$

so

$$
m+1=2 k^{2}+2 k+1=k^{2}+(k+1)^{2} .
$$

2. Consider the arithmetic progression $1,4,7,10, \ldots, 100$. Let A be any set of twenty distinct numbers chosen from this arithmetic progression. Prove that there must be two distinct numbers in A that sum to 104.

Solution: There are 34 numbers in this arithmetic progression. There are 16 possible pairs whose sum is 104 , notably $100+4,97+7, \cdots, 55+49$.). If you retain 20 distinct numbers, you are eliminating 14. So at most you can eliminate 14 of the 16 possible pairs, leaving at least 2 pairs.
3. Two vertical posts, one of height h_{1} and the other of height h_{2} stand on level ground, a distance l apart. A supporting wire is stretched from the top of each pole to the base of the other. Find the height above ground h_{3} of the point at which the two wires cross.

Solution. Let x be the distance from the foot of the pole of height h_{2} to the point on the ground directly below where the wires cross. The distance from this point to the foot of the pole of height h_{1} is therefore $l-x$. From similar triangles, we see that $\frac{h_{3}}{l-x}=\frac{h_{2}}{l}$, and
$\frac{h_{3}}{x}=\frac{h_{1}}{l}$. Eliminating x and solving for h_{3}, one obtains

$$
h_{3}=\frac{h_{1} h_{2}}{h_{1}+h_{2}} .
$$

4. If you ask n people what their birthdate is (ignoring the year), what is the smallest number of people you must ask to have at least a 50% chance of finding someone with the same birthdate as you? You can ignore leap years, so assume 365 days in a year. You can express your result as the solution of an equation, without needing to solve that equation.

Solution: If $N=365$ is the number of days in the year, the chance that somebody's birthdate misses matching yours is $(N-1) / N$. When you ask n people their birthdates, the chances that none of them have your birthday is $[(N-1) / N]^{n}$. The solution to the problem is thus given by the solution of the equation

$$
\frac{1}{2}=1-\left(\frac{N-1}{N}\right)^{n}
$$

with $N=365$. The solution is $n=252.6519 \ldots$, so 253 rounded to the nearest integer.
5. Let a, b, c, d be positive integers satisfying $a b+c d=34, a c+b d=46$ and $a d+b c=31$. Find $a+b+c+d$. Then find all solution sets (a, b, c, d).

Solution: Add the last two equations, this gives $(a+b)(c+d)=77$. So $(a+b),(c+d)$ must be 7 and 11 in some order. So $a+b+c+d=7+11=18$.
Now if $a+b=7$, and we consider all possible pairs (a, b), it is only the pairs $(1,6),(6,1)$ and $(2,5),(5,2)$ that give a value for $c d$ such that $c+d=11$, being the pairs $(4,7),(7,4)$, and $(3,8),(8,3)$ respectively. Substituting into the given equations in the problem statement, one finds that the only solutions are $(a, b, c, d)=(1,6,4,7),(6,1,7,4),(4,7,1,6),(7,4,6,1)$, and $(a, b, c, d)=(2,5,3,8),(5,2,8,3),(3,8,2,5),(8,3,5,2)$.
6. From a point P on the circumference of a circle of radius r, a tangent line is drawn to a point T, where the length of the line $P T$ is 10 units. The shortest distance from T to the circumference of the circle is 5 units. A straight line is drawn from T cutting the circle at point X and then further at point Y. The length of $T X$ is 7.5 units. Find (a) The radius r of the circle, and (b) the length $X Y$.

Solution: Let O be the centre of the circle, and Z be the point such that $X Z$ is a diameter. Then triangle $O P T$ is a right triangle, so $O T^{2}=r^{2}+P T^{2}$, and $O T=r+5$, so $r^{2}+100=$ $(5+r)^{2}$, so $r=7.5$. Now consider the triangles $O Y T$ and $O Y X$. Let x be the length $X Y$, and α be the angle $\angle X T O$. From the triangle $X T O, \cos \alpha=\frac{12.5^{2}+7.5^{2}-7.5^{2}}{25 \cdot 7.5}=\frac{12.5}{15}$. From the triangle $Y T O$, then $\cos \alpha=\frac{12.5^{2}+(x+7.5)^{2}-7.5^{2}}{25 \cdot(x+7.5)}=\frac{12.5}{15}$, which has solutions $x=0,17.5 / 3$,
so the length $x y$ is $17.5 / 3=5.833333 \cdots$.
7. Find all real solutions of the equation

$$
x^{3}+4 x^{2}+8 x+\frac{1}{x^{3}}+\frac{4}{x^{2}}+\frac{8}{x}=140 .
$$

Solution: Rearrange as

$$
\left(x^{3}+\frac{1}{x^{3}}\right)+4\left(x^{2}+\frac{1}{x^{2}}\right)+8\left(x+\frac{1}{x}\right)=140 .
$$

Rewrite as

$$
\left(x+\frac{1}{x}\right)^{3}+4\left(x+\frac{1}{x}\right)^{2}+5\left(x+\frac{1}{x}\right)=148 .
$$

Set $y=x+\frac{1}{x}$, to yield

$$
y^{3}+4 y^{2}+5 y-148=0
$$

Since $148=1 \cdot 4 \cdot 37$ we first look for a solution involving these integers (positive or negative).
It's easy to see that one root is $y=4$, so

$$
y^{3}+4 y^{2}+5 y-148=(y-4)\left(y^{2}+8 y+37\right) .
$$

Notice that the discriminant of the quadratic is negative ($64-148=-84$), so $y=4$ is the only real solution. So $x+\frac{1}{x}=4$, or

$$
x^{2}-4 x+1=0,
$$

from which we obtain the solutions $x=2 \pm \sqrt{3}$.

