THE UNIVERSITY OF
 MELBOURNE

The University of Melbourne School Mathematics Competition, 2023 INTERMEDIATE DIVISION

Time allowed: Three hours

These questions are designed to test your ability to analyse a problem and to express yourself clearly and accurately. The following suggestions are made for your guidance:
(1) Considerable weight will be attached by the examiners to the method of presentation of a solution. Candidates should state as clearly as they can the reasoning by which they arrived at their results. In addition, more credit will be given for an elegant than for a clumsy solution.
(2) The seven questions are not of equal length or difficulty. Generally, the later questions are more difficult than the earlier questions.
(3) It may be necessary to spend considerable time on a problem before any real progress is made.
(4) You may need to do rough work but you should then write out your final solution neatly, stating your arguments carefully.
(5) Credit will be given for partial solutions; however a good answer to one question will normally gain you more credit than sketchy attempts at several questions.
Textbooks, electronic calculators and computers are NOT allowed. Otherwise normal examination conditions apply.

1. Let m be a positive integer, such that $2 m+1$ is a perfect square. Show that $m+1$ is the sum of two successive perfect squares.
2. Consider the arithmetic progression $1,4,7,10, \ldots, 100$. Let A be any set of twenty distinct numbers chosen from this arithmetic progression. Prove that there must be two distinct numbers in A that sum to 104 .
3. Two vertical posts, one of height h_{1} and the other of height h_{2} stand on level ground, a distance l apart. A supporting wire is stretched from the top of each pole to the base of the other. Find the height above ground h_{3} of the point at which the two wires cross.
4. If you ask n people what their birthdate is (ignoring the year), what is the minimal number of people you must ask to have at least a 50% chance of finding someone with the same birthdate as you? You can ignore leap years, so assume 365 days in a year. You can express your result as the solution of an equation, without needing to solve that equation.
5. Let a, b, c, d be positive integers satisfying $a b+c d=34, a c+b d=46$ and $a d+b c=31$. Find $a+b+c+d$. Then find all solution sets (a, b, c, d).
6. From a point P on the circumference of a circle of radius r, a tangent line is drawn to a point T, where the length of the line $P T$ is 10 units. The shortest distance from T to the circumference of the circle is 5 units. A straight line is drawn from T cutting the circle at point X and then further at point Y. The length of $T X$ is 7.5 units. Find (a) the radius r of the circle, and (b) the length $X Y$.
7. Find all real solutions of the equation

$$
x^{3}+4 x^{2}+8 x+\frac{1}{x^{3}}+\frac{4}{x^{2}}+\frac{8}{x}=140 .
$$

