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SENIOR DIVISION
Solutions

1. Place the digits {1, 2, 3, 4, 5, 6, 7, 7, 8} in the 3 × 3 square to form six 3-digit numbers that add to
2021. It is enough to find one solution. An example adding to 2723 instead of 2021 is given below.

7 2 3

4 5 6

1 7 8

7→ 723 + 456 + 178 + 741 + 257 + 368 = 2723

Solution:

a b d

c f g

e h i

The sum is

S = 200a+ 110(b+ c) + 101(d+ e) + 20f + 11(g + h) + 2i.

The minimum value of S occurs when the smallest digits are assigned to the largest coefficients, i.e.

(a, b, c, d, e, f, g, h, i) = (1, 2, 3, 4, 5, 6, 7, 7, 8)⇒ S = 1949

hence S ≥ 1949. If 1 is swapped from a to another digit, the increase will be at least 200− 110 = 90
but 1949 + 90 > 2021 hence a = 1. Similarly, if one of {2, 3, 4, 5} is swapped from {b, c, d, e}, the
increase will be at least 101 − 20 = 81 but 1949 + 81 > 2021 hence {b, c, d, e} = {2, 3, 4, 5}, as a set
and we haven’t determined the order.

The strategy is to begin with the minimal solution and swap entries to increase the sum S by
2021 − 1949 = 72. Any swap will increase the sum by a multiple of 9. Swap 2 ↔ 4 and 3 ↔ 5 to
increase S by 4× 9 = 36 and swap 6↔ 8 to increase S further by 2× 18 = 36. This yields:

1 4 2

5 8 7

3 7 6

7→ 142 + 587 + 376 + 153 + 487 + 276 = 2021

(One can show that there are exactly 4 solutions by applying 2 ↔ 3 and/or 4 ↔ 5 to the solution
above.)



2. Prove that there are only finitely many triples of positive integers (a, b, c) satisfying

1

2
=

1

a
+

1

b
+

1

c
.

Solution: By symmetry we may assume a ≤ b ≤ c.
We have 3 ≤ a ≤ 6 since if a ≤ 2, 1

a + 1
b + 1

c >
1
2 and if a ≥ 7, 1

a + 1
b + 1

c ≤
3
7 <

1
2 .

Consider the four cases a = 3, 4, 5, 6.

a = 3. Then b ≥ 7 (else 1
a + 1

b >
1
3 + 1

6 = 1
2) hence

1

c
≥ 1

2
− 1

3
− 1

7
=

1

42
⇒ c ≤ 42.

a = 4. Then b ≥ 5 (else 1
a + 1

b >
1
4 + 1

4 = 1
2) hence

1

c
≥ 1

2
− 1

4
− 1

5
=

1

20
⇒ c ≤ 20.

a = 5. Then b ≥ 5 (else a is not the smallest) hence

1

c
≥ 1

2
− 1

5
− 1

5
=

1

10
⇒ c ≤ 10.

a = 6. Then b ≥ 6 (else a is not the smallest) hence

1

c
≥ 1

2
− 1

6
− 1

6
=

1

6
⇒ c = 6.

Hence
3 ≤ a ≤ b ≤ c ≤ 42

so there are at most 40×40×40 = 64000 solutions, where a is not necessarily smallest, which is finite.
Note: There are exactly 46 solutions.

3. Let O(n) be the number of odd coefficients of (1 + x)n. For example, O(3) = 4 since (1 + x)3 =
1 + 3x+ 3x2 + x3 has 4 odd coefficients. Calculate

511∑
n=1

O(n).

Solution: Draw Pascal’s triangle modulo 2. The top two rows give a triangle of three 1s so that

1∑
n=0

p(n) = 3

where p(0) = 1. The triangle of three 1s appears 3 times in the first four rows so that

3∑
n=0

p(n) = 3× 3 = 32.

The first four rows appears three times in the first eight rows to give:

7∑
n=0

p(n) = 32 × 3 = 33.

Similarly, as the number of rows is doubled, the previous pattern appears three times, and the number
of 1s is tripled, giving:

2k−1∑
n=0

p(n) = 3k.

Hence
511∑
n=1

p(n) = 39 − 1 = 19682.



4. Let p be a polynomial of degree 2020 satisfying

p(1) = 1, p(2) = 2, p(3) = 3, ..., p(2020) = 2020, p(2021) = 0.

Prove that for any integer n, p(n) is an integer.

Solution: The polynomial

p(x) = x− 2021
(x− 1)...(x− 2020)

2020!
satisfies p(n) = n for n = 1, ..., 2020 and p(2021) = 0. Moreover p(x) is necessarily given by this formula
since any other polynomial q(x) must satisfy p(n)−q(n) = 0 for n = 1, ..., 2021 and degree p(x)−q(x) =
2020. But then p(x)− q(x) ≡ 0 since any such polynomial has a factor of (x− 1)(x− 2)...(x− 2021)
which is of degree 2021.

For any integer n, we can equivalently write

p(n) =

 n− 2021
(
n−1
2020

)
n > 0

n− 2021
(
2020−n
2020

)
n ≤ 0

which clearly takes integer values.

5. Ruby, Sam and Theo are each given one of three consecutive integers (for example 24, 25 and
26). They know their own number and that the three numbers are consecutive, but do not know the
numbers given to the others. The following sequence of true statements is made, in order:

Ruby says: “I do not know all three numbers.”
Sam says: “I do not know all three numbers.”
Theo says: “I do not know all three numbers.”
Ruby says: “I do not know all three numbers.”
Sam says: “I now know all three numbers.”
Theo says: “I do not know all three numbers.”

What number is Theo given?

Solution:
A. If anyone was given 1 then that would person would know from the beginning that the other

two were given 2 and 3. Since each person first says “I do not know the other numbers” no-one was
given 1.

B. If Theo was given 2 then he would know the other numbers are 3 and 4 since by A he would
know the others do not have 1. But he says “I do not know the other numbers” so we (and the other
players) may conclude that Theo’s number is greater than 2.

C. Similarly to B, if Ruby was given 2 then she would know the other numbers are 3 and 4 just
before the second time she speaks. But she says for a second time “I do not know the other numbers”
so we (and the other players) may conclude that Ruby’s number is greater than 2.

D. If Sam was given 2 or 3 then just before the second time she speaks she would know the numbers
of the others: 3 and 4 if she was given 2, or 4 and 5 if she was given 3, since she knows that the others
are given numbers greater than 2. If Sam was given a number greater than 3 then she would not know
the others’ numbers. So we (and the other players) may conclude that Sam was given 2 or 3.

E. By D, Theo was given 3, 4 or 5. If Theo was given 3 then just before the second time he speaks
he knows that Sam was given 2 and Ruby was given 4. If Theo was given 5 then just before the second
time he speaks he knows that Sam was given 3 and Ruby was given 4. Since he says for a second time
“I do not know the other numbers” we may conclude that Theo was given 4.

In conclusion, (Ruby, Sam, Theo) were given (2, 3, 4) or (3, 5, 4) so Theo was given 4.



6. Choose two chords of a circle independently and randomly by choosing their endpoints on the cir-
cle with uniform probability. What is the probability that the two chords intersect? The two chords
intersect in the picture on the left and do not intersect in the picture on the right.

Solution 1: We may assume the circle has circumference 1 and write the circle as the unit interval
[0, 1], where 0 and 1 are identified/glued together to produce the circle. Two chords are determined
by a point in [0, 1]× [0, 1]× [0, 1]× [0, 1] where the first two factors determine the first chord and the
final two factors determine the second chord. The probability space is in fact

[0, 1]× [0, 1]

Z2
× [0, 1]× [0, 1]

Z2

since the same chord is produced when the endpoints are flipped. We can ignore this since every pair
of chords appears 4 times via flipping, and will not affect the proportion = probability of chords that
intersect.

Let
M ⊂ [0, 1]× [0, 1]× [0, 1]× [0, 1], D ⊂ [0, 1]× [0, 1]× [0, 1]× [0, 1]

be the subset of those chords that intersect, respectively don’t intersect, so their union gives the entire
space M ∪D = [0, 1]× [0, 1]× [0, 1]× [0, 1] i.e. Pr(M) + Pr(D) = 1. There is a map

D →M

defined by using the saem endpoints to construct chords that intersect as in the diagram.

This map is 2 : 1 hence Pr(D) = 2Pr(M) and since Pr(M) + Pr(D) = 1 we find that the proba-
bility that the two chords intersect is Pr(M) = 1/3.

Solution 2: By rotation, we may assume that the first endpoint is at 0 ∈ [0, 1], and say the sec-
ond endpoint is at x ∈ [0, 1]. Then the second chord does not intersect the first chord if both of its
endpoints lie in (0, x) or both in (x, 1). The probability of the first is x× x and the probability of the
second (1− x)× (1− x) hence the probability that they don’t intersect is

x2 + (1− x)2.

In order to “add’ all such probabilities we need to integrate to get the probability that the two chords
don’t intersect:

Pr(D) =

∫ 1

0
(x2 + (1− x)2)dx =

x3

3
− (1− x)3

3

∣∣∣∣1
0

=
2

3
.

Hence

Pr(M) = 1− Pr(D) = 1− 2

3
=

1

3
.



7. Find the angle ∠BED = α shown in the following diagram.

50◦
30◦

60◦
20◦

α

A

B C

D

E

Solution 1. Reflect triangle ABC twice as follows: reflect C in AB to get C ′ and reflect B in AC to
get B′ as in the diagram. Drop a perpendicular from C ′ to AB′ at P on AB′.

50◦

30◦

60◦

20◦

α

A

B C

D

E

C ′ B′

P

30◦

20◦20◦ 20◦

20◦

Then P divides AB′ into equal parts since AB′C ′ is equilateral. Hence by symmetry

∠EB′A = 20

as indicated. Then ∠BC ′A = 30 and ∠EB′A = 20 imply that CD = reflection of C ′D and BE =
reflection of B′E are the two lines in the original diagram with angles 50 and 60 i.e.

50 = ∠BC ′D = ∠BCD, and 60 = ∠CB′E = ∠CBE.

The important point is that the perpendicular C ′P passes through D and E. Finally,

α = ∠AEP − ∠BEC = 70− 40 = 30.

Solution 2. Trigonometric proof.
Put AB = 1 = AC, BC = x = BD, AE = y = BE.
Cosine rule on AEB ⇒ y = 1

2 cos(20) .

Sine rule on BCE ⇒ x
sin(40) = y

sin(80) = y
2 sin(40) cos(40) ⇒ x = y

(2 cos(40)) = y
1+y (∗)

where (∗)uses

2 cos(40) = 1 + y ⇐ 8 cos(20)3 − 6 cos(20)− 1 = 0⇐ 8 cos(20)3 − 6 cos(20) = 2 cos(60) = 1.

Now, x = y
1+y ⇒ y = x

1−x ⇒ BED and ACD are similar triangles.
⇒ α = 30.


