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1. Let the positive integer N be given by√√√√√√√√
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2. Maya places integers in each of the boxes below, so that each integer is the sum of the two
integers immediately below it. At most how many odd numbers can Maya write?

Solution 1: If two evens appear next to each other, we can replace them with two odds,
which does not affect what is above, and does not make worse what is below—one can check
this by filling. The strategy is to fill from the top and always place two odds below an even.
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We get 19 odds. One can also fill in this way:
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which produces only 18 odds. Alternatively, one can show by filling that the 5th, 6th and 7th
rows must each have at least two evens, since a single even propagates two many evens (except
in the example of 18 odds above). Similarly, the 2nd, 3rd and 4th rows must each have at least
one even. Hence there are at most 1 + 1 + 2 + 3 + 3 + 4 + 5 = 19 odds, which is realsied above.
Hence Maya can write as most 19 odd numbers.

Solution 2. The following solution is due to Grace He. We begin with a few observations.
First, consider any three box triangle and observe that it is not possible for all three boxes in
such a triangle to contain odd numbers. Thus each three box triangle must contain at least
one even number. Now consider any six box triangle. Notice that specifying the parity of the
numbers in the bottom three boxes uniquely determines the parity of the numbers in every
other box of the triangle, hence there are 23 = 8 possible ways to fill in a six box triangle:

In all cases, at least two of the six boxes contain even numbers. Moreover, we see that at least
one of the three corner boxes (coloured in blue below) of any six box triangle must contain an
even number.

Now consider splitting the given figure into regions as shown below:



From our prior observations, we know that each of the four red regions must contain at least
1 even number, each of the two green regions must contain at least 2 even numbers, and also
that at least one of the three blue boxes must contain an even number. Adding these up, we
know that there must be at least 4× 1 + 2× 2 + 1 = 9 even numbers, so that there can be at
most 28 − 9 = 19 odd numbers. A configuration which achieves a total of 19 odd numbers is
shown in Solution 1.

3. A class of 30 students plays the following game. The numbers 1 to 32 are written on the
blackboard. The first student replaces two of the numbers on the blackboard with their sum
decreased by 1; the second student replaces two of the numbers on the blackboard with their
sum decreased by 2; and so on, so that the nth student replaces two of the numbers on the
blackboard with their sum decreased by n. The game continues until each student has played.
At the end of the game the final two numbers on the board are both positive. What are all the
possible final two numbers on the board?

Solution: The sum of the final two numbers is

1 + 2 + ...+ 32− 1− 2− ...− 30 = 31 + 32 = 63.

If the number 1 was never replaced, then the final two numbers must be 1 and 62. Similarly,
the final two numbers can be i and 63 − i for i ∈ {1, ..., 32} if i was never replaced. Hence,
the final two numbers can be any two positive numbers that add to 63 (regardless of whether
a number was left unreplaced throughout).

4. Find all products

N × b1b2....b2019 × b1b2....b2019 = b1b2....b2019b1b2....b2019

where N is an integer and each bi is a digit, i.e. an integer satisfying 0 ≤ bi < 10, b1 6= 0 and
we write decimal numbers in terms of digits, so for example b1b2 = 34 if b1 = 3 and b2 = 4.

Solution: Put m = b1b2....b2019. Then we have

N ×m2 = (102019 + 1)m⇒ m =
102019 + 1

N

In particular , N | 102019 + 1. If N > 10 then 102019+1
N

< 102018 so m will have fewer than
2019 digits. Hence N is less than 10, odd and N 6= 3, 5 or 9 because 10n + 1 ≡ 2 mod 3 and
10n + 1 ≡ 1 mod 5 for any n. Also, N 6= 1 since if m2 = (102019 + 1)m then m = 102019 + 1
which has 2020 digits. Hence N = 7.

Now 7 | 10n + 1 when n ≡ 3 mod 6 hence 7 | 102019 + 1. We divide to get

b1b2....b2019 = 142857142857...142857143



where the last digit is 3 since 7× 3× 3 = 3 mod 10, or by rounding up 2.8.

5. Given the longest length of a triangle, if we randomly choose its other two lengths, what
is the probability that the triangle is acute? In other words, given a length a > 0, randomly
choose 0 < b < a and 0 < c < a such that b+ c > a, and form a triangle with side lengths a, b
and c, then what is the probability that all angles of the triangle are less than π/2?

This question is ambiguous as stated. The following solutions assume different distributions.
The first of these assumes uniform distributions of points, and the second assumes uniform
distributions of lengths. (A third solution chooses the lengths consecutively uniformly in one
dimension resulting in a non-uniform distribution in the plane.) Suppose the triangle has
vertices A, B and C and opposite lengths a, b and c.

Respectively, the solutions assume:
1. A uniform distribution of the point A with fixed B and C in the plane.
2. A uniform distribution of lengths b and c in the square.
3. First choose b uniformly on [0, a] then choose c uniformly on [a− b, a].

Solution 1:
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In the picture the interval of length a is one edge of a triangle. We choose the vertex A of
the triangle from the closed region given by the intersection of two radius a quarter-circles, so
that 0 < b < a and 0 < c < a. The shaded region has boundary a radius a/2 circle centred at
the midpoint of the vertical edge, and gives those points where the triangle is obtuse. This is
because those points on its boundary satisfy a2 = b2 + c2.

The area of the closed region is
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which gives two times the area of 1/6 of a circle of radius a minus the area of an equilateral
triangle of side length a. The shaded region is half of a circle of diameter a and has area
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Hence the probability of choosing an acute triangle, i.e. the probability of choosing a point in
the region bounded by the broken lines, is

1−
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Solution 2: The following solution is due to Jeff Li. We may assume a = 1. Then, b and c
are chosen uniformly from the region 0 < b < 1, 0 < c < 1 and b + c > 1. The acute triangles
occur when b2 + c2 > 1.



So the probability of choosing an acute triangle, i.e. the probability of choosing a point in the
lightly shaded region, is given by the area of the lightly shaded region divided by the total area
of both regions.

P =
1− π/4

1/2
= 2− π/2.

Solution 3: The following solution is due to Jeff Li. Again assume a = 1. Choose b uniformly
from (0, 1). For a given b, choose c uniformly from (1−b, 1), then the triangle is acute only if c is
in (
√

1− b2, 1). So the probability that the triangle is acute is P (b) = (1−
√

1− b2)/(1−(1−b).
The probability of choosing an acute triangle probability integrates P (b):
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6. Consider a 4× 4 grid with each position containing a happy or sad face. If you touch a face
then it changes that face and all neighbouring faces—those that share an edge—from sad to
happy or happy to sad. For example, the right diagram is obtained from the left diagram by
touching the top left face.

(i) Beginning with all sad faces, as in the left diagram, is it possible to change this to all
happy faces by touching the faces in a particular sequence?

(ii) Beginning with any initial setup of happy and sad faces, is it possible to change this to
all happy faces by touching the faces in a particular sequence?

→

Solution: Simply touch the four faces shown below to transform from all sad to all happy.

No. There are initial setups of happy and sad faces, from which it is impossible to change to
all happy faces. There are 216 possible configurations of happy and sad faces. There are also
216 possible ways to touch faces, since the order of touching does not matter, and we need to
touch a face at most once because touching twice is the same as not touching. If we touch the
faces in the diagram below, then we will return to the original position, so it is the same as



touching no faces. But this means that from all happy faces, we can only reach fewer than 216

configurations, and conversely there are initial setups of happy and sad faces, from which it is
impossible to change to all happy faces.

7. Six points are drawn in the plane such that no three points lie on a straight line and such that
all 15 distances between pairs of points are distinct. The six points form 20 triangles. Prove that
among these there is one triangle whose longest side is also the shortest side of another triangle.

Solution 1: Colour each longest side of a triangle red. We will prove that there is a triangle
with all sides red, hence its shortest side is also the longest side of another triangle.

Label the closest two points P1 and P2. The 4 triangles containing P1P2 produce 4 red edges
incident to either P1 or P2. Either

(i) there are at least 3 red edges incident to one of P1 and P2, or
(ii) P1 and P2 are each incident to 2 red edges.
In case (i) the other ends of the three red edges incident to P1, say, form a triangle, one of

whose edges is red, and this together with two of the red edges incident to P1 forms a triangle
with all sides red. In case (ii), label the other ends of the three red edges incident to P2 by P3

and P4, so P2P3 and P2P4 are red. Then 4P1P3P4 forces either P3P4 to be red, hence 4P2P3P4

has all sides red as desired, or one of P1P3 or P1P4 to be red, in which case P1 is incident to 3
red edges which reduces to case (i).

Solution 2: The following solution is due to Jeff Li. For every edge joining a pair of points,
colour it red if it is the longest side of some triangle, otherwise colour it blue. We will first
show that there is a monochromatic triangle, i.e. a triangle with all sides the same colour.

Indeed, pick any point, call it P1, and consider the five edges incident to this point. By the
Pigeonhole Principle, three of these five edges must be the same colour. Label the points at the
other ends of these three edges P2, P3 and P4. If the edges P2P3, P2P4 and P3P4 were all the
same colour, then 4P2P3P4 would be a monochromatic triangle. On the other hand, if these
three edges were not all the same colour, then one of them would be the same colour as P1P2,
P1P3 and P1P4 so would form a monochromatic triangle with two of these edges. In both cases,
there is a triangle with all sides the same colour.

Now take this monochromatic triangle and notice that it must have at least one red side
since its longest side is coloured red. Then, since the triangle is monochromatic, the shortest
side of this triangle must also be coloured red, hence the shortest side of this triangle is also
the longest side of some other triangle.


